Analyse Complexe TD 12

Familles normales

Exercice 1

Soit $\sum a_k z^k$ une série entière de rayon de convergence 1. Pour $n \geq 0$ et $z \in \mathbb{C}$, on pose

$$S_n(z) = \sum_{k=0}^n a_k z^k.$$

- 1. Montrer que la suite $(|S_n(z)|^{1/n})_{n\geq 1}$ est uniformément bornée sur tout compact de \mathbb{C} .
- 2. Montrer que si $z \in D$ vérifie $\sum a_k z^k \neq 0$, alors $\lim_{n \to +\infty} |S_n(z)|^{1/n} = 1$. Montrer que si $z \in \mathbb{C}$ est tel que $\overline{\lim} |S_n(z)|^{1/n} \leq 1$, alors $z \in \overline{D}$.
- 3. A l'aide du théorème de Montel, en déduire la théorème de Jentzsch : pour tout complexe ω de module 1, il existe une suite d'entiers strictement croissante $(n_k)_k$ et une suite de nombres complexes $(z_k)_k$, telles que pour tout k, z_k est un zéro de S_{n_k} , et que $z_k \to_k \omega$.

Exercice 2

Soit U un domaine de \mathbb{C} , \mathcal{F} une famille de $\mathcal{O}(U)$. On dit que \mathcal{F} est normale si de toute suite $(f_n)_n$ d'éléments de \mathcal{F} , on peut extraire une sous-suite $(f_{\phi(n)})_n$ telle que $(f_{\phi(n)})_n$ converge uniformément sur les compacts de U soit vers une fonction holomorphe, soit vers l'infini.

- 1. Soit $z_0 \in U$, K un compact non vide de U, r > 0 et \mathcal{F} une famille normale de $\mathcal{O}(U)$ telle que $|f(z_0)| \ge r$ pour toute $f \in \mathcal{F}$. Montrer qu'il existe un entier n telle que toute $f \in \mathcal{F}$ s'annule au plus n fois sur K.
- 2. Soit $a \in \mathbb{C}$ et r > 0. Montrer que la famille

$$\mathcal{F} = \{ f \in \mathcal{O}(U), f(U) \subset \mathbb{C} \backslash D(a, r) \}$$

est normale.

3. Soit S un segment de longueur non nulle de \mathbb{C} . Montrer que la famille

$$\mathcal{F} = \{ f \in \mathcal{O}(U), f(U) \subset \mathbb{C} \backslash S \}$$

est normale.

4. Soit $a \in \mathbb{C}$. Montrer que la famille

$$\mathcal{F} = \{ f \in \mathcal{O}(U), f(U) \subset \mathbb{C} \setminus \{a\} \}$$

n'est pas normale.

Pour les deux exercices suivants, on admettra la généralisation suivante ¹ du théorème de Montel vu en cours :

Théorème. Si a, b sont deux nombres complexes distincts, U un domaine, et

$$\mathcal{F} = \{ f \in \mathcal{O}(U), f(U) \subset \mathbb{C} \setminus \{a, b\} \}.$$

Alors \mathcal{F} est une famille normale, au sens de l'exercice précédent.

Exercice 3

Soit U un domaine de \mathbb{C} .

^{1.} Aussi due à Montel.

1. Soit $z_0 \in U$ et $(f_n)_n$ une suite d'éléments de $\mathcal{O}(U)$, telle que la famille $(f_n)_n$ ne soit pas normale en z_0 . Montrer qu'il existe $a \in \mathbb{C}$ tel que pour tout ouvert V de U contenant z_0 et tout entier N,

$$\mathbb{C}\backslash\{a\}\subset\bigcup_{n\geq N}f_n(V).$$

2. Soit $z_0 \in U$, et $f \in \mathcal{O}(U \setminus \{z_0\})$ admettant une singularité essentielle en z_0 . Soit r > 0 assez petit pour que les fonctions

$$f_k(z) = f(z_0 + \frac{z - z_0}{k})$$

soient définies sur $D(z_0, r)\setminus\{z_0\}$. Montrer que la famille $(f_n)_n$ n'est pas une famille normale de fonctions holomorphes sur $D(z_0, r)\setminus\{z_0\}$.

- 3. En déduire le "grand théorème de Picard" : soit $z_0 \in U$, $f \in \mathcal{O}(U \setminus \{z_0\})$ admettant une singularité essentielle en z_0 , alors il existe $a \in \mathbb{C}$ tel que dans tout voisinage de a, f prenne toute valeur de $\mathbb{C} \setminus \{a\}$.
- 4. Déduire du grand théorème de Picard le petit théorème de Picard déjà rencontré dans les TD 5 et 7.

Exercice 4

1. Soit α un réel strictement positif, 0 < r < R deux réels. On considère

$$\mathcal{F}_{\alpha} = \{ f \in \mathcal{O}(D), |f'(0)| \ge \alpha \}.$$

Montrer l'existence d'une constante ρ ne dépendant que de α, r, R telle que pour toute $f \in \mathcal{F}_{\alpha}$, l'une au moins des propositions suivantes soit vraie :

- $-B(f(0),\rho)\subset f(D)$;
- $--\{z\in\mathbb{C},r\leq |z-f(0)|\leq R\}\subset f(D).$
- 2. Notons $\mathcal{A} = \{f \in \mathcal{O}(D), |f'(0)| \geq 1\}$. Montrer l'existence d'une constante absolue $\delta > 0$ telle que si $f \in \mathcal{A}, f(D)$ contient un disque fermé de rayon δ . Ce disque peut-il être choisi centré en f(0)?

Cette question donne une preuve plus conceptuelle d'un résultat similaire à celui de l'exercice 8 du TD 2, mais moins précis, puisqu'il ne dit rien sur la constante δ . Pour mémoire, c'est cet énoncé quantitatif qui avait été utilisé dans l'exercice 6 du TD 5 pour donner une démonstration du petit théorème de Picard.